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IN A ?ALLTISTAGE AXIAL-FLOW COMPRESSOR 

By Arthim A. Medeiros, Howard F. C a l v d ; ’  and David B. Fenn 

SUMMARY 

Rotating-stall and blade-vibration  data  for  the f i r s t  three r o t o r  
blade rows of a =-stage d a l - f l o w  compressor w e r e  obtained a t   i n l e t  
temperatures of -50°, 60°, and l55O F . The stall frequency f o r  a  given 
s t a l l   pa t t e rn  w a s  found t o  be essentially  a  linear function of actual 

actual  speed  range  mer which a given s t a l l   pa t t e rn  was obtained  shifted 
w i t h  the  various  inlet  temperatures-investigated. The speed  range for a 

* given stall pattern could be uniquely  defined by equivalent  engine  speed. 
The ra t io  of stall speed to engine  speed wa6 agproximately  constant  for a 
given stall  configuration and v a r i e d  from 0.47 t o  0.5.5 for stall patterns 
consisting of one t o   f i v e  zones. 

-r engine  speed and was independent of in le t  temperature. However, the 

The speeds a t  which resonant blade  vibrations i n  the   f i r s t   th ree  
stages of r o t o r  blades could occur were determined from critical-speed 
diagrams and verified by strah-gage measurements. The c r i t i c a l  gpeeds 
were independent of. inlet  temperature- However, because the stall pattern 
a t  a given speed. is a function of inlet   tmperatke,   resonant  vibrations 
at the   c r i t i ca l  speed would occur only over the temperature  range where 
the   s t a l l  zone responsible f o r  the resonant condition was encountered. 

The investigations  reported  in  references 1 to 3 show that stall  of 
a b h h  row r e s f i t s  i n  low-flow regions ( s t d l  zones) that are usually 
symmetrically  spac& around the circumference of the blade row. The low-  
flow Zones prupqate  around the blade r o w  from the  pressure  surface to 
the  suction  surface of the  blades. Because of the   re la t ive  motion between 
the  symmetrically spaced s ta l l  zones and the  blades, each blade q e r i e n c e s  

of the  periodic loading of rotat- stall with  resonant b M e  vfbrations. 
In some instances  theae  vibrations have resul ted in fatigue failures. , 

.. a  periodic  fluctuation of loading. Refeencee 4 to 7 show the  correlation 

L 
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In multistage compressors the stall-propagation  velocity has been 
found to be in the relat ively narrow range from 45 t o  57 percent of the 
rotor speed. The rimer of zones i n  the stall patterp, however, has 
varied from 1 t o  8 (refs. 6 t o  a), so that a large range of blade  excita- 
tion  frequencies i s  gossible. 

The natural frequency of the rotor  blades of a compressor is a func- 
t ion  of the actual  rotational speed of the rotor blade row. The natural 
frequency  increases with speed  because of the stiff- effect  of cen- 
trifugal force.  The.aerodynamic operaking  condition of the compressor, K )  E 
however, is a function of equivalent  speed. The equivalent  speed i s  
defined. as the actual  speed divided by the square  root of the r a t i o  of 
i n l e t  temperature ta 'standard sea-level temperature (5S0 F) . Thus, inlet 
temperature may have a definite effect  on stal l - inci ted blade vibrations 
because of the many combinations  of actual and eqbivalent speeds that are 
possible. For this reason, it i s  aesirable   to  determine a correlation of 
inlet temperature and stall characterist ice and attendant  blade  vibrations. 

The investigation  reported  herein, conducted at the  NACA Lewls lab- 
oratory, is concerned wfth the  effects  of inlet temperature on s ta l l  fre- 
quency  and blade Vibration. A W-stage axial-flow compressor was run a0 
part  of a turbojet  engine at i n l e t  temperatures of -50°, 60° and 155' F. 
The Reynolds number index for   the two extreme temperatures wae 0.46 and 
fo r  the intermediate  temperature, 0.89. The Reynolds number index i s  

f 

w 

defined as ";r2, where P, T, and p are inlet pressure, tem- 
(T/Ts2  p %2 

peratme, and Viecosity,  respectively. The subscrtpt 132 indicates sea- 
level  standard  conditions. The investigation covered a speed range from 
approximately 55 t o  75 percent of rated equivalent  design speed. The 
highest equivalent speed i s  the maximum at which rotating stall was en- 
countered along the  equilibrium  engine  operating line with rated nozzle 
area. Data were obtained t o  determine the umber of stall zones present 
i n   t h e  compressor, the stall  frequency, asd the  vibratory stresses in the 
f irst  three  rotor rows. . . . - . . . . . . - . . . . .   - .  

.. . _" 

Instal la t ion 

The &al-flow compressor used f o r  the investigation  reported herein 
consisted of 13 stages and w a s  run a6 part of a turbojet engine i n  an 
a l t i tude  test  chsniber. The engine vas fitted with an adjustable-area 
exhaust nozzle, so that the compressor operating point at any given speed 8 

could  be varied. 
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1 Instrumentation . 

The flow fluctuations of rotating s ta l l  were measure3 by the use of 
a constant-current  hot-wlre anemometer. The  anenmmeter signals were 
recorded on a 24-chasnel  recording  oscillograph. Each a n e m o m e t e r  probe 
was fitted with a 0.001-inch-diameter by 0 .lO-inch-long wire. The wire 
w a s  kept a t  a constant  average  temperature. The flow f luctustions w e r e  
detected from the instantaneous  variations in w L r e  temperature (resist- 
ance) . A resistance-capacitor compensator w a s  used to   obtain  the nec- 
essary speed of response. 

Anemometer probes were located i n  the  stator passage of the  first, 
second, aad third stages. Three angular spacings of the probes w e r e  
provided in each stage. The n W e r  of stall zones was determined  by the 
method shown in reference 2. 

The blade stresses were measured i n  the f i r s t  three  rotor stages by 
the use of resistance-wire  strain gages. The stra3-n gages were instal led 
on 24 rotor blades equally divided mng the three stages in two diamet- 
rically  opposite groups of four  blades each. Lead wires from the gages 
were run  to  a slip-ring assembly mounted on the front of corqpressor. The 
slip-ring assembly and stran-gage  circuit  are described in reference 9 .  

Procedure 

The engine was run over a range of speeds from approximately 55 t o  
75 percent of rated  equivalent speed. The exhaust-nozzle mea waa varied 
at each  speed from tha t  requfred for  rated  operation to that for  lim€ting 
exhaust-gas temgerature at approximately 75 percent of equivalent design 
speed. The inlet conditions  are  as follows: 

.89 
-50 .46 

Rotating-Stall  Characteristics 

The alj8olute stall frequencies naeasured i n  this investigation  are 
plotted i n  figure 1 as a function of engine speed. The data f o r  the  
standard temperature (60° F) were reported in refmence 6. S t a l l  config- 
urations  consisting of 1, 2, 3, 4, and 5 stall zones w e r e  detected. The 
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various stall sonfigurations were obtarLned by varying both speed and 
exhaust-nozzle mea, so that more than one stall pattern could be obtained 
at a given  engine speed. The absolute stall frequency for  any given &all w 
configuration (number of stall zones) increases  linearly,  within  experi- 
mental scatter,  with compressor speed. The different inJ,et conditions 
had no apparent  effect on the l inear   re la t ion between flaw-fluctuation 
frequency and coqpressor  speed. The greatest effect of inlet conditio- 
i s  the change in  the compressor speed range a t  which stall i s  encountered. 
As the inlet temperature is increased, the maximum speed at which stall 
occurs a l so  increases. E 

m 
The increased engine speed at which s ta l l  i s  encountered can be 

anticipated on the  basis of conrpressor theory.  For a given ram pressure 
ratio,  the operating  point of the compressor (pressure  ratio and equiva- 
len t  weight flow) in a turbojet  engine i s  uniquely defined by  equivalent 
speed and exhaust-nozzle  area,  disregarding  effects of Reynolds nmiber. 
Equivalent flow and equivalent speed  determfne the stall configuration 
encountered in a particular compressor. With a given exhaust-nozzle  area, 
therefore, the same stall configuration can  be  expected a t  a given  equiv- 
alent speed. Thus, the absolute, o r  actual, engine speed range over which 
a stall configuration i s  encountered is a function of inlet temperature. 7 

The higher the i n l e t  temperature, the higher the actual t peed at which 
rotating s ta l l  will be encountered with a given exhaust-nozzle mea. 
Since the e"l frequency can be considered an aerodynamic velocity, it 
can further be expected that, at a given  equivalent engine speed a& 
exhaust-nozzle area, the same equivalent stall frequency (fdo) would 
be obtained. 

4 

The equivalent a t a l l  frequencies measured with the three inlet t e m -  
peratures  are  plotted  in  f igure 2 against equivalent compressor weed. 
A t  any given  equivalent  coqressor weed, the  same eAuivalent stall fre- 

i n l e t  temperature. The speed lfmits over w h i c h  a given s t a l l   c b a c t e r -  
i s t i c  i s  obtained  are slightly different, because tes t ing  limitations did 
not  permit a choice of exhaust-nozzle area that is independent of inlet 
conditions. The m i n i m u m  area was fixed by limiting  exhaust-gas tempera- 
ture, and the maximum area was limited by the neceseary rem pressure  ratio 
required acrosa the test   ins ta l lzbion.  I n  general, however, the range of 
equivalent  speeds  over which a given stall pattern east6 is indepedent 
of i n l e t  temperature. 

. quency i s  obtdned for a given stall configuration, regardless of  t he  

The r a t i o  of stall velocity h = f& t o  compressor speed i s  plotted 
against  equivalent compressor speed in   f igure  3 (X i s  the number of s t a l l  
zones in the pattern) . With the exception of a few scattered  points,  the 
stall-velocity to  compressor-speed r a t i o  i s  conetant over the equivalent- 
speed  range for  any given s t a l l  configuration. The average  speea r a t i o  
for each of the   f ive  stall configurations i s  as fOllows : 
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S t a l l  zones, X Ratio of stall velocity 
t o  rotor speed, II/N 1 1  

.55 
CFI cn The range of speed ra t ios  i s  relatively mxrm asd falls within  the range 
6l previously  encountered In multistage compressors. 

Data obtdned on multistage compressors presented i n  the form of 
figures 2 and 3'would represent a satisfactory  calibration of  rotating- 
a t d l  frequencies  obtaimble i n  that   par t iculm compressor, regardless 
of the inlet temperature at w h f c h  the data were obtained. It would be 
necessary, of course, to determine the  exact  equivalent-speed Units t o  
which each of the stall canfiguration6 i s  confined for a given exhaust- 
nozzle mea. 

B l a d e  Vibration 
- 

The effect  of M e t  temperature on rotating s t a l l  m a y  be interpreted 
with respect t o  i t s  effect  on resonant blade vibration. The engine speeds 
a t  which resonant  vibrations could  occur in a particular blade r o w  can be 
determined from a plot of the r a t i o  of rotating-stall  frequency t o  natural 
bending  frequency of the blades against engine speed. In the  case of a 
rotor blade row the relative stall frequency must be uad: 

f: = NX - f 
w h e r e  f: is the stall  frequency relative t o  rotor blades, f i s  the ab- 
solute stall  frequency, I? is the engine speed, and X is  the number of 
stall zones i n  the stall pattern. In addition, the natural bending fre- 
quency of the blades should be corrected  for the stiffening  effect of 
centrifugal  force  (see ref. 10). 

Critical-speed dFagram.s for the first three  rotor blade rows for the 
compressor used in this investigation are shown in figure 4. The re lat ive 
stall  frequencies were calculated from the  absolute stall frequencies ob- 
tained f rom figure 1 and extrapolated Uneasly f o r  an engine  speed  range 
f r o m  3000 t o  8300 r p m .  Tnaamuch a6 the wave form of the force  variation 
resulting from rotating stall  contains  strong hamnonics  and i s  not simply 
sinusoidal,  the  bladea can be exci ted  to   resomt  vibrat ion  not  only when 
the stall and natural bending  frequencies  are  equal but also when the 
s t a l l  frequency is some fraction  (e.g., 1/2, 1f3, etc.) of the  natural  
frequency of the blades. The nuniber of harmonics that m u s t  be considered 
depends on the particular shage and strength of the wave form due t o  
rotat5ng stall. 

- 
I 
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The c r i t i c a l  speeds  obtatned from f lgu re -4 . ee  listed in the follow- .. ? 

ing table. Resonance w i t h  the fundamental 8 . d  fFrst haslm>nfc only &re 
considered: 

Stage m i n e  speed, 
r p m  

1 

5 190 
3730 
7550 

2 3250. 
4150 
5800 

3 4150 
52 70 
7550 

Stall  zones 

5 
4 
3 

5 
4 
3 

5 
4 
3 

I Type of resonance 

FundamentaL 
F i r s t  harmonic 
F l r s t  harmonic 

F i r s t  hsrmonic 
F i r s t  harmonic 
First harmonic 

F i r s t  harmonic 
F i r s t  harmonic 
F i r s t  harmonic 

Although these c r i t i c a l  speeds  aze all pO68ible, the inlet tempera- 
ture must be such  U t ,  at the given critical speed, the equivalent speed .I 

i s  i n  the range where the s ta l l  zone responsible  for  resonant  vibration 
i s  present. This necessary  condition i s  i l lus t ra ted  i n  figure 5 fo r   t he  
case of the three-zone stall pattern. Engine  speed i s  plotted against 
i n l e t   t o t a l  temperature. An auxiliary  scale  presents  the flight Mach 
nuniber tha t  would give the corresponding inlet total teurperature fo r  
f l i g h t  in the  tropopause. Two l ines  of constant  equivalent speed (4780 
and 6140 rpm)  me shown; these are the equivalent-speed l i m i t 6  over which 
three stall zones can be  obtained as indicated in figure 2. I n  addition, 
three lines of constant  actual speed (5190, 5800, and 7550 rpm) are Bhown, 
which correspond t o   t h e   c r i t i c a l  speeds for the first, second, and th i rd  
stages,  respectively. 

- 

Figure 5 indicates that resonant blade vibration in the f i r s t  stage, 
due t o  three s t a l l  zones, can be  expected  over an inlet-temperature range 
from approximately -90' t o  160' F. The effective  inlet-tenqerature  range 
for  tbree-stall-zone  excitation i n  the second etage i s  from approximately 
5 O  t o  310° F. In the  third stage resonant excltation  with the f i r s t  haz- 
monic of the three stall  zone6 could be expected only a t  some inlet tem- 
perature above 340' F, which corresponds t o  a flight Mach number i n  the 
tropopause of approximately 2.3. D i a g r a m s  similar to   f igure  5 could be 
made f o r  each stall configuration to determine the temperature  ranges 
over which blade vibrations due to   ro ta t ing  s t a l l  could be  encountered. 

The maximum vibratory  stresses measured i n  each of the f i rs t  three 
stages me shown i n  figure 6.  In the f irst  stage, the maximum stress 
occurs a t  5200 rpm and is due t o  resonance  with the first harmonic with 
three stall zones; t h i s  apees with the critical. speed sham in figure 
4(a). The leve l  of maximum vibratory stress vmies  because of the 
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dlfferent  inlet-air   densit ies for the  three  sets of data. Peak stresses 
are  encountered a t  5200 rpm over  the  entire range of i n l e t  temperature 
run. From figure 5 it would be  expected that 821 inlet temperature j u s t  
sl€ghtly above the maxim& run (l55O F) would be  sufficient t o  put  the 
c r i t i c a l  speed outside the equivalent-speed  range f o r  three stall zones; 
therefore, high vibratory  stresses would not be  encountered in the first 
stage. 

4 

CH or 
0 

In the second stage,  the maximum vibratory stress occurs a t  5800 rpm. Figure 4(b) indicates  that  the high s t r e s s   a t  t h i s  speed is  due t o  

temperature r a g e  wer wbich 5800 r p m  is critical i s  from 5O to 310° F 
(fig. 5); consequently, a t   t he  lowest i n l e t  temperature used i n  t h i s  in- 
vestigation ( -SO0 F), high  vibratory  stresses  are not encountered. 

u1 resonance with the f i r s t  harmonic of three stall zones. The in le t -  

In  the  third  stage, high stresses are encountered at 5200 r p m  only 
wLth the  intermediate  temperature.  Figure 4( c) shows that  the  resonant 
condition on the turd stage at this speed occurs  because of the first 
harmonic of four stall  zones. The equivalent-speed  range f o r  four stall  
zones is 4570 t o  5850 rpm. The temperature range, then, over which high 
vibratory  stresses might be encountered a t  5200 rpm i s  f r o m  -50° t o  210° 

to   the  low-temgerature limit to explain why high stresses were not en- 
countered with the cold in l e t  temperature ( S O o  F) . However, the runs 
made a t  high inlet temperature ( E 5 O  F) were within the range where high 
stresses would have been measured a t   t he   c r i t i ca l  speed. With the high 
inlet temperature, the minimum exhaust-nozzle  area run was limited by 
high exhaust-gas  temperatures; consequently, the compressor did  not  oper- 
ate in the  region *ere four s t a l l  zone6 Would be prevalent. 

L 

- F. The lower temperature used in the  investigation was sufficiently  close 

The stall and blade-vibration  data  reported.  herein  indicate  that  the 
stall frequency i s  a function  only of the   s ta l l   pa t te rn  asd the  absolute 
compressor speed. The absolute speed at which remnant  blade  vibrations 
excited by EL part icular   s ta l l  pattern can be encountered  does .not change 
with inlet temperature; however, the speed at wh ich  the particular .stall 
pattern can be obtained depeds on i n l e t  temperature. 

SUMMARY OF RESULTS 

An investigation t o  determine the  effects of inlet temperature on 
rotating stall and associated blade-vibration  characteristics of a mul t i -  
stage  axial-flow compressor produced the following results:  

I 1. Stall  patterns  consisting of 1, 2, 3, 4, and 5 stall zones were 
detecte&at all i n l e t  temperatures In the  equivalent compressor speed 
range  between 4600 and 6200 rpm. The actual speed range over which a 
given stall pattern m a  encountered was determined  by  equivalent  engine 
speed and in l e t  temperature. 
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2.  The s t a l l  frequency f o r  a given s ta l l  configuration w a s  essen- 
t i a l l y  proportional  to actual engine speed and was independent of the 
compressor-inlet  temperature. The r a t i o  of stall speed t o  engine  speed 
was essentially  constant  for a given stall .pattern and varied from 0.47 
f o r  the one-zone pattern t o  0.55 for  the  five-zone s ta l l  pattern.  

L 

3. Critical-speed diagrams and vibratory-stress measurements ahowed 
that resonant blade vibrations could occur in the  first-stage rotor blades 
at 5200 r p m  and i n   t h e  second-stage rotor blades at 5800 rpm. I n  both In 
cases, resonance was a result of the f i r s t  harmonic of the three-zone 52 
st'd.1 pattern.  The c r i t i c a l  speed for  the  third-stage  rotor  blades was VI 
5200 r p m  and was a resu l t  of the f i r s t  harmonic of the  four-zone stall 
pattern. 

b . .  

4. The c r i t i c a l  speed at w h i c h  the blade vibrations due t o  a given 
rotating-qtall   pattern can occur is independent of M e t  temzerature. 
The existence of the given stall  pattern at that speed, however, depends 
on the  campressor-inlet tenlperature. 
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Absolute engine speed, rpm 

Figure 1. - Variation of stall frequency xitfi engine speed and stall configuration. 
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Figure 3. - Varletdon of ratio of stall velocity t o  engine speed with  
equivalent  engine speed. 
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Figure 4. - Continued.  Critical-spedd diagrmns. 
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Figure 4. - Concluded. Critical-speed diagrams. 
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Engine speed, rpm 

Figure 6. Vibratory stress   in first three  rotor blade 
rows RS function of engine speed. 

I 




